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1. Introduction 

A typical problem of global optimization that has attracted a great deal of 
attention from researchers in recent years is the reverse convex programming 
problem: 

minimize cx 

s.t. x ~ D \ E  , 

where D is a polytope, E is an open convex set in ~n and c E ~n (see, e.g. Tuy 
[15], Horst & Tuy [3] and the references therein). As it is known, when E is the 
unit ball, checking the feasibility of the constraint x E D \ E  is a set containment 
problem, which has been shown to be NP-hard [1]. No wonder that the general 
purpose algorithms that have been developed so far for the above problem can 
usually handle only instances of a very limited size. 

In this paper we are concerned with a special variant of the reverse convex 
programming problem where the set E has a particular structure which allows 
large scale problems to become tractable. Specifically, setting E = {x I f (x )  ~ 1}, 

we consider the problem 

(P) minimize cx 

s.t. x E D  (1) 

f (x )  <~ 1, (2) 

where D is a polytope and f : R" ~ R is a continuous function, quasiconcave on D 
and possessing the following rank two property ([14], [16]) on D: 

(o)  There exist two linearly independent vectors c a, c2E R" such that Vx ~ D: 

z E R", c 'z  t> O(i = 1, 2) ~ f ( x  + z) >~f(x). 
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Of particular interest is the case when f(x) is the product of two affine 
functions, e.g. f(x) = (clx + dl)(cZx + d2). Condition (e)  obviously holds for 
functions of this form and if (clx + d l )  > 0 and (c2x + dz) > O, Vx E D, then, as 
can be checked easily, log f(x) is concave, hence f(x) is quasiconcave on D. 
Functions that are the product of two affine functions occur in a number of real 
world problems. Among the applications reported in different fields: mi- 
croeconomics, transportation, investment optimization, VLSI design, etc. let us 
mention some economic models presented in Henderson & Quandt [2], certain 
problems of optimizing floor plans for electronic packages discussed in Maling et 
al. [9] and problems arising from bond portfolios optimization discussed in Konno 
& Inori [5]. 

Aside from products of affine functions, the class of quasiconcave functions 
with rank two property includes all functions of the form f(x) = g(x1)  q- Ein_-2 hixi ,  

where g(.) is a concave nondecreasing functions of one variable (condition ( � 9  is 
fulfilled with c ~= ( 1 , 0 , . . .  ,0), c 2= (0, h 2 , . . .  ,hn) ). In particular, it includes 
concave quadratic functions with just one eigenvalue (considered on an appropri- 
ate domain). To show one last nontrivial example let us consider a linear two 
level optimization problem: 

minimize hlU + h2v 

s.t. AlU + B~v ~ gl , 

u I> 0, (u, v) E R p x ~q and 

v E argmax{d2v [ Azu + Bzv <~gz, v >>- O} , 

(see [16] and the references therein), where the matrices A 2 and B 2 have a single 
row. If we define ~b(u) = max{dzv I Azu + Bzv <~g2, v >~0}, x = (u, v) and rewrite 
this problem as a reverse convex program 

minimize hlU + hzv 

s.t. A l U  d- Blv <'gl, Azu + B2v <-ge , 

u ~ O , v ~ O ,  and 

qb(u) - dzv <~ 0,  

then it can be seen easily that this is a special case of (P) because the function 
f(x) = qb(u)- d2v + 1 is concave and satisfies condition (o) with c 1= (0 , -d2 ) ,  
c 2= ( - A 2 , 0 ) .  Thus a variety of problems of relevant practical interest can be 
cast into the form (P). 

A problem similar to but more general than (P) has been studied recently by 
Thach et al. [14]. In the present context, the method of these authors reduces (P) 
to a quasiconcave minimization problem in •2, which is then solved by an outer 
approximation method. The resulting algorithm is quite practical, since it operates 
in two dimensions. 



R A N K  T W O  R E V E R S E  C O N V E X  C O N S T R A I N T  443 

The aim of the present paper is to propose an efficient finite algorithm for 
solving problem (P), different from the one of Thach et al. Computational 
experiments with this algorithm have given very encouraging results. Basically, 
our approach consists in solving (P) by a sequence of iterations, involving each 
two phases as in the method of Tuy & Thuong [18] (see also [3]) for linear 
programs with an additional reverse convex constraint. In Phase I we use the 
same local moves as in the latter method to improve the current best solution, 
while in Phase II, to "transcend" the current best solution we use a parametric 
algorithm for rank two quasiconcave minimization developed in a recent work of 
Tuy & Tam [17]. To take full advantage of the specific structure of the problem, 
we will also make several improvements while carrying out each phase. 

The paper is organized as follows. After the Introduction, we formulate in 
Section 2 a subproblem (to be called master problem) which has to be solved 
repeatedly in our approach. We also describe the procedure to be used for solving 
this master problem. In Section 3 we present the solution method for problem 
(P). In Section 4 we give the detailed algorithm and discuss its convergence as 
well as other related issues. An illustrative example is given in Section 5. Finally 
in Section 6 we present the computational results and compare our algorithm with 
the method in [14]. 

2. Master Problem and Main Subroutine 

Let e > 0 be a given tolerance. We will consider problem (P) solved if a feasible 
solution s of (P) has been found such that 

c.~ <~ c x  + e 

for all feasible solutions x. For short, we will call such a feasible solution an 
e-optimal solution of problem (P). 

A basic question which arises when considering a global optimization problem 
such as (P) is the following: 

Let s be a feasible solution. How to recognize whether ~? is an e-optimal 
solution and if it is not, how to find a better feasible solution than J?? 

If we denote M = D n {x I cx <- cs - e} then dearly the inequality min{f(x) I x 
M} > 1 implies that ~ is e-optimal while any z ~ M with f(z)~< 1 will give a 
feasible solution such that cz < cs Thus, for our problem (P) an answer to the 
above question will be obtained by solving the following subproblem: 

(Q) minimize f (x )  

s.t. x E M .  

We will refer to this subproblem as the master problem. As will be seen shortly, 
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any procedure for solving this master problem can be used as the main subroutine 
in a method for solving (P). 

When f(x) is the product of two linear functions, problems of  the form (Q) 
have been studied by Yajima & Konno [19], Konno et al. [7], Suzuki et al. [13], 
Pardalos [10], and especially by Konno & Kuno [6]. In the general case of an 
arbitrary rank two quasiconcave function f(x),  an efficient solution procedure for 
(Q) has been developed recently by Tuy & Tam [17]. In the sequel we will use 
the latter procedure to solve our master problem. 

Let us state the theorem that serves as the foundation for the procedure of Tuy 
& Tam: 

THEOREM 1. Let c 1, C 2 be the two vectors in the rank two condition ( o ) and for 
each ~ ~ [0, 1] let x~ be an optimal solution o f  the linear parametric program 

(Re) minimize aclx + (1 - a)c2x 

s.t. x E M .  

Then min { f (x , )  I 0 <- a <- 1} = min { f(x) I x E M }. 
Proof. See [17], where this theorem was derived from a polyhedral annexation 

algorithm for solving (Q). A direct proof has been given in [4]. In the important 
special case when f(x) = (clx)(cZx) an elementary proof can also be found in [11], 

[] 

As a straightforward consequence of this Theorem we obtain the following 
parametric procedure for solving the master problem (Q): 

Let r  be the optimal value in (R~) (as is known from parametric program- 
ming theory, ~(a) is a convex piecewise affine function). Compute the 
sequence of break points of r 

0 = al < ' " "  < ~j-1 < ~j < ' "  " < aN+1 = I  (3) 

along with, for each j = 1 . . . .  , N, a vertex x j of M which is a basic optimal 
solution of (R~) for all a ~ (aj, aj+,]. Then an optimal solution of (Q) is given 
by the point x r such that 

f (x  r )  = min{f(xJ) l j = 1 , . . .  ,N}  . 

Thus solving the master problem (Q) reduces to computing the sequence of break 
points (3) together with the associated sequence x l , . . .  ,x N§ and the values 
f ( x l ) , . . .  ,f(xN+I). In the next section we will present a solution method for 
problem (P) using this parametric procedure as main subroutine. 
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3. Solution Method 

Let  u be an optimal solution of the linear program 

min{cx Ix ~ D} 

which is obtained from (P) by omitting the reverse convex constraint (2). If u 
satisfies the reverse convex constraint as well, then it obviously solves (P),  i.e. the 
reverse convex constraint is not essential (can be omitted).  Therefore ,  it is natural 
to assume that every optimal solution u of the above linear program satisfies 
f (u )  > 1, or equivalently, that 

min{cx I x E D} < min{cx I x E D,  f (x )  <- 1}. (4) 

To find an e-optimal solution of (P),  we propose to proceed in a number  of 
iterations, consisting each of two phases. In Phase I we perform some inexpensive 
" local"  moves in order  to improve the best feasible solution available to us at this 
stage (for short this current best feasible solution will be denoted by CBS) .  When 
local moves are no longer possible, we pass to Phase II, the main task of which is 
to test C B S  for e-optimality and to " t ranscend" it i.e. to find a bet ter  feasible 
solution than C B S  when it is not yet e-optimal. In more detail each phase 
proceeds as follows. 

P H A S E  I. This phase is entered with the knowledge of a feasible solution z ~ 
which is a vertex of the current polytope M (at the beginning, M = D) .  Consider 
the linear problem 

(L)  minimize cx 

s.t. x E M .  

Since by assumption (4) cz ~ > min{cx  Ix  ~ D}, z ~ is not optimal for (L).  Hence,  
starting from z ~ we can perform simplex pivot operations to move from z ~ to a 
neighbouring vertex z I such that cz I < cz ~ then from z 1 to z 2 and so on. In this 
way we will obtain a sequence of bet ter  and better  vertices z ~ z 1, z 2 , . . ,  of M. 

Eventual ly we must arrive at some vertex z i having a neighbour z ;§ with 
cz i§ < cz ~ but lying on the other  side of the surface S := (x I f (x )  = 1}. As soon 
as the latter situation occurs we compute the intersection point $ of the surface S 
with the edge [z ~, zi+l]. Then E will give a better  feasible solution than z ~ (except 
in rare degenerate  cases where z ~ already is such an intersection point, i.e. i = 0). 
We then set C B S  ,~--~ and enter  Phase II. 

P H A S E  IL In this phase we text s = CBS  for e-optimality and " t ranscend" it if 
necessary. For  that purpose we solve the master problem (Q)  with M redefined as 
M = D n (x  [ cx <<. cs  - e}.  This means we use e to exclude C B S  from the further 
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computation.  According to the procedure described in Section 2, we consider the 
associated linear parametric program 

(R~) minimize aclx + (1 - a)c2x 

s.t. x E D  
cx <<- c~ - e .  

Starting from a~ = 0  we compute the successive break points a i E  [0, 1] i =  
1, 2 , . . . )  of (Re) along with the basic optimal solutions x ~ associated with the 
intervals (c~, a,+l] and the values f(xJ). There are two possibilities: 

1. f (x  i) ~< 1 for a certain break point aj. As soon as this occurs, we stop the 
parametric procedure at aj : x j is a better  feasible solution than ;?, so we go 
to Phase I of the next iteration with z ~ = x j. 

2. f (x  ~) > 1 for every break point a t (i.e. the parametric procedure is continued 
until the break point aN+ 1 = 1). Then, by Theorem 1, f(x) > 1 for all x E D 
such that cx ~< c5 - e, hence 2 is an e-optimal solution and we terminate. 

Note  that in this way, if a further iteration is needed,  then Phase I of the next 
iteration will always be entered with a feasible solution z ~ which is a vertex of M. 

R E M A R K S .  
(i) Starting Vertex. 

One point that remains to be clarified in t h e  above method is how to define the 
feasible solution z ~ for Phase I of the first iteration. In certain cases such a z ~ may 
be readily available. Otherwise, we carry out a Phase II with M = D, i.e. we 
compute the break points of the linear parametric program min{acXx + ( 1 -  t~) 
c2x I x ~ D ) together with the associated vertices of D and the values of f(x) at 
these vertices: either a vertex of D is obtained with a value of f(x) ~< 1, in which 
case this vertex is used as z ~ for the first iteration; or no such vertex is found, in 
which case problem (P) is infeasible. 

(ii) Selection o f  e. 
We use e only to transcend CBS, hence e can be chosen very small as its choice 
hardly effects the performance of the method. Only in some rare cases the 
number  of iterations can slightly increase. 

(iii) Improvement of  the parametric procedure. 
Let  us call lastalpha the last break point of the current linear parametric program 
(R~) reached at the completion of Phase II. Practical experiments show that the 
same sequence of break points {% = 0 , . . . ,  lastalpha) in an iteration k is found 
again very often in iteration k + 1, in which usually further break points greater 
than lastalpha are calculated until a new better  feasible solution than CBS is 
found (naturally the associated basic optimal solutions x j may differ because the 
polytope M is not the same). 

To take advantage of this phenomenon,  instead of computing again all the 
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break points {% = 0 , . . . ,  lastalpha} one enters Phase II with a 0 = lastalpha and 

proceeds in the same way as before. If aN+ 1 = 1 is reached (without discovering 
any vertex which is a better  feasible solution than CBS) then the break points 
between 0 and lastalpha together with the associated vertices of M and the values 
of  f(x) at these vertices have to be computed to make sure that all the break 
points have been scanned. To do this we go back to the situation at lastalpha and 
generate the remaining break points moving backwards from lastalpha to 0. This 
requires storing the matrix of coefficients and all arrays defining the current basic 
solution after the first minimization program of Phase II in every iteration. 

In most examples we have solved this improvement proved to be remarkable,  
sometimes very important.  

4. The Algorithm 

From the above we can now state the following detailed algorithm, assuming 
condition (4). 

Algorithm: 

Initial Step: 
Set M := D;  
lastalpha := 0; 
If a feasible vertex z ~ of D is available then 

goto Step 1; 
Otherwise 

goto Step 2; 
Step 1: 

1.1.: Set i := 1; 
1.2.: Perform a pivot operation of the simplex method for minimizing cx over 

M to obtain a new basic solution z i. 
1.3.: I f f ( z i ) > ~ l  then 

s  argmin{cx [ x ~ [z i-1, zi]; f ( x )  -~" 1}; (5) 

CBS := s 
M := M fq {x [ cx <<- c(CBS) - e} ; 
goto Step 2; 

If f (z  ~) < 1 then 
increment i; 
goto 1.2.; 

Step 2: 
2.1.: Set a o := lastalpha; 

move := up; 
x ~ := argmin{lastalpha cXx + (1 - lastalpha)cZx Ix E M}; 
Set j := O; 
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2.2.: 

2.3.: 

If f (x  j) > 1 then store; 
goto 2.3.; 

If f (M) ~< 1 then 
Z ~ : =  xJ; 

lastalpha := aj; 
goto Step 1; 

If move = u p  then 
Otj+ 1 := max{a [ a ~ (aj, 11 s.t:: x j is optimal for (R~)}; 
If aj+ 1 = 1 then 

restore; 
X j : = X0; 

o~j := lastalpha; 
move := down; 
goto 2.3.; 

Otherwise {%+1 < 1} 
Let x j§ be a basic optimal solution of (R~) 

for a = aj+ 1 + 3 ;  {3 > 0 ,  arbitrary small} 
Otherwise {move = down} 

tXj+ 1 := min{a ] a E [0, aj) s.t.: x j is optimal for (R~)}; 
If aj+ 1 = 0 then stop. 

{CBS is an e-optimal solution} 
Otherwise 

Let x j+~ be a basic optimal solution of (R~) 
for a = %+1 - 3; {3 > 0 ,  arbitrary small} 

increment j;  
goto 2.2.; 

T H E O R E M  2. The above algorithm terminates after finitely many steps. 
Proof. Phase I is finite because it is only part of a simplex procedure and Phase 

II in the worst case involves computing all the break points of a linear parametric 
program. Therefore, each iteration is finite. 

At  the completion of Phase I in iteration k we have a point sk which is at the 
intersection of an edge of D with the surface S (more precisely, s is the point of 
this intersection that has the smallest value of cx, see (5)). But cs k§ <~ cs k - e < 
cs k. Therefore the sequence {s contains no repetition. Since each edge can 
generate at most one point like s and the number of edges is finite, the finiteness 
of the algorithm follows. [] 

REMARKS.  
1. The intersection [z i-1, z g] N {x I f ( x ) =  1} (see (5) in Step 1.3) usually is a 

singleton but in certain cases may consist of two points or even of an entire 
segment. We always take s to be the point of this intersection that lies the 
farthest from z i-l ,  so it is uniquely defined. 
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. The above algorithm assumes condition (4). However ,  in practice we may not 
know whether  or not  this condition holds. In this case, we should begin with 
computing a basic optimal solution u of the linear program 

minimize cx s.t. x E D .  

If f ( u )  ~< 1 then u solves (P) and we terminate. If f (u )  > 1, then every time a 
new feasible solution z better  than the current C B S  is obtained (z = s in Step 
1.3 or z = x j in Step 2.2) we must check whether cz = cu, in which case z 
solves (P) and we terminate. 

5. Illustrative Example 

To illustrate how the method works, we consider an example in R 2 which can be 
visualized easily: 

minimize cx 

s.t. A x < ~ b  

f(X) :~--" (CIx "[- dl)(C2X -4- d2) ~ 1 ,  

with the following data: 

x E R E ; c  = (--4, --1) ; 

C 1 = (0.002, -0 .02 ) ;  C 2 = (0.01, 0.03); d 1 = 0.8; d 2 = 1.4 ; 

" - 2  - 5 "  "185" 
0 - 1  45 
3 - 5  345 
2 - 1 160 

A =  2 1 ; b =  160 
3 5 310 

- 2  7 155 
- 5  3 25 

. - 1  0- 5- 

As can be seen in Figure 1 the feasible domain is disconnected (it consists of 
two disjoint parts). Assumption (4) holds because u := (80, 0) E argmin{cx Ix E 
D} and f (u )  = 2.112 > 1. 

To find a starting vertex we solve the problem (minimize cx s.t. A x  <~b}. 

Thereby we get the vertex ( - 5 ,  - 3 5 ) ,  which we denote as first CBS.  The further 
execution of the algorithm yields the following values: (The first index represents 
the iteration number.)  

1. Iteration: 

Step 1: 
z TM := ( - 5 ,  - 3 5 ) ;  
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~ - \  \ ~ _22 .o 

-.30 -20 LO 20 3.0 ~ \ 40 5.0 60 \ \ 7.0 \ u 

D 

~21 

~z 

Z'" Z'" !i 

Fig. 1. The two iterations to solve the example. 

z11: = (25, - 4 5 ) ;  
z 12 : =  (40, - 4 5 ) ;  

z 13 : =  (65, - 3 0 ) ;  

CBS : =  s  : =  (44.52, - 4 2 . 2 9 ) ;  

M : =  D fq {x [ cx <~ - 1 4 0 . 7 7 } ;  

Step 2: 
xl~ = (45.6, - 4 1 . 6 4 ) ;  
a 11: = 0.57; 

CBS: = x11: = (27.68, 30.05); 

f(z 13) = 1 . 7 6 >  1; 

c(CBS) = - 135.77; 

f (x  11) = 0.656 < 1; 
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. Iteration: 
Step 1: 

z2~ = CBS; 
z21: = (45, 35); 
z22: = (70, 20); 

CBS: = s = (56.9, 27.86); 

M: = M tq {x I cx <~ -260.44};  
Step 2: 

x2~ = (58.36, 26.98); 
a21: = 1; {restore} 

a21: = 0.57; 
x21: = (70.07, -19 .85) ;  
a~2: = 0; stop. 

f (z  22) = 1.46 > 1; 

c(CBS) = -255.44;  

Hence  CBS = (56.9, 27.86) is the global e-optimal solution. For  reasons of 
graphical representat ion we chose e = 5 unusually large. 

6. Computational Results and Comparison 

The  algorithm was tested on various problems of the form (P) where the polytope 
D was defined by 

D : =  {x [ A x < - b , x  >-O} , 

and f (x)  = (clx + dl)(C2X + d2). A ~ ~mXn was generated randomly between - 5 0  
and 50 such that 0 ~ D. In the same way c, c I and c 2 were generated, then d 1 and 

d 2 were chosen such that each function cix + d/, i = 1, 2 had a positive sign over 
D. At  least the reverse convex constraint was scaled such that assumption (A) 

held and the feasible area was not emPtY. 
For  each set of constraints five different objective functions c were chosen 

randomly.  About  20 constraint sets were generated yielding 100 examples. The 
size of the problems varied between n = 40, m = 40 and n = 100, m = 60. We set e 
to 0.0001. In practice very small values of e can be used because we only have to 
make  sure that at each iteration CBS is deleted from the feasible area. In our 
experiments variation of e did not change the number of iterations. 

The program was coded in Turbo Pascal and run on a 386 microcomputer  with 
20 MHZ.  

It could be observed that the local improvement  in Step 1 took place 
predominantly in the first few iterations where sometimes more than 100 pivot 
operations were executed, whereas after three or four iterations Step 1 tended 
very strongly to take only two pivots. This means that to find a vertex better  than 
CBS (with respect to cx) we immediately have to cross the border  of the set 
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T= {x I (clx + dl)(c2x + d2) = 1}. (6) 

We also noted a moderate tendency of a growing number of iterations if the 
number of pivots in Step 1 in the first few iterations was rather small but this 
property could not be generalized. 

With very few exceptions all examples showed that the effort spent in Step 2 
was considerably larger than in Step 1, 

The break points lastalpha computed in each iteration were distributed without 
any striking pattern but a noticeable tendency to form clusters, i.e. many break 
points in a small interval. 

Most of the pivot operations performed in Step 2 occurred during the first few 
iterations. In the later iterations a new feasible solution for passing to the next 
break point was found frequently with a single pivot operation. As mentioned 
above Step 1 often computed just an intersection point adjacent to the starting 
vertex, hence in many iterations we got a total number of only three pivots which 
can be interpreted as a "zig-zaging" of the algorithm along the surface (6). 

Naturally the total number of iterations varied widely with each objective 
function. The maximum number of iterations encountered was 63. 

The running time of the program execution was proportional to the number of 
pivot operations with only a small amount of time necessary for the storage 
operations in Step 2.1. 

A method for a larger class of problems also applicable to solve (P) is 
presented by Thach et al. [14]. The problem is reduced to a quasiconcave 
minimization problem in ~z which is solved by applying the outer approximation 
method (OAM). The calculation requires a number of iterations with two linear 
programs. This approach to solve (P) was implemented by Pferschy [12] and 
several experiments of the same form and in the same environment as described 

Table I. 

Problem Nr. 1 2 3 4 5 

m 40 40 40 40 50 
n 40 50 60 70 40 

new method: 
av. iterations 8.2 13.4 13.8 20.2 13.4 
av. pivots Step 1 23.4 52.8 89.4 63.8 48.0 
av. pivots Step 2 36.4 88.2 89.2 128.8 71.4 
av. total pivots 109.8 198.0 257.6 284.6 152.4 
av. total time (sec) 5.7 12.5 19.1 24.5 9.6 

(OAM) from [14] 
av. iterations 9.8 9.2 8.6 9.2 9.4 
av. total pivots 1233.4 1950.8 2438.6 2506.2 1275.6 
av. total time (sec) 57.6 110.7 161.8 193.1 72.2 
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above were performed. The size of the problems varied between n = 30, m = 30 
and n = 70, m = 60. The computation of an e-optimal solution for the same small 
e as in our algorithm poses no problem in this case as we have a linear objective 
function. 

We observed that the number of iterations varied only in a surprisingly small 
interval usually between 8 and 11 and was hardly dependent on the size of the 
problem but more closely related to the choice of ~/, the relaxation parameter of 
the reverse convex constraint. Hence the effort spent to solve the linear programs 
was most important for the total performance of the algorithm. The necessary 
calculation of a considerable number of linear programs caused this algorithm to 
take generally much longer than the method in this paper for all choices of ~7. For 
reasonable values of ~7 the number of pivot operations of this (OAM) algorithm 
was about ten times higher. However it is applicable to more general problems. 

Tables I and II show the performance of both methods on 10 selected 
examples. Beside the size of the problems at first the number of iterations for the 
new algorithm is shown followed by the number of all pivot operations in Step 1 
and in Step 2, the sum of the pivot operations (including the computation of a 
starting vertex) and the total running time in seconds. Then the number of 
iterations and pivots and the total amount of time in seconds needed for the 
method in [14] are given. All values are taken in average over the five different 
objective functions for each constraint set. Additional tables, remarks and a 
sourcecode listing can be found in Pferschy [11]. 

REMARK. It was pointed out by an anonymous referee that a problem of the 
same class has been studied recently by Kuno et al. [8], who applied outer 
approximation to compute a lower bound of the optimal value with a not 
necessarily feasible solution. 

Table II. 

Problem Nr. 6 7 8 9 10 

m 50 50 60 60 60 
n 50 70 40 50 70 

new method:  
av. i terations 17.0 18.0 13.8 7.8 12.8 
av. pivots Step I 72.2 83.4 50.2 67.2 96.6 
av. pivots Step 2 81.0 120.2 67.8 47.6 161.2 
av. total pivots 216.2 308.6 197.8 231.0 451.8 
av. total t ime (sec) 16.7 32.1 13.5 19.5 54.7 

(OAM) f rom [14] 
av. iterations 9.6 9.2 8.8 8.0 8.2 
av. total pivots 1951.2 3649.0 1800.6 1945.2 3353.8 
av. total t ime (sec) 137.0 340.1 121.1 163.9 379.8 
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